To MUF or Not to MUF: What is the Data Showing Us?

Bradley Kulat CCP, LP
Coordinator of Perfusion Services
Ann & Robert Lurie
Children’s Hospital of Chicago

Is there any difference in data when comparing conventional ultrafiltration (CUF) to modified ultrafiltration (MUF) in pediatrics?

That is the question!

Modified Ultrafiltration After Pediatric Cardiac Surgery: A Systematic Review
Systematic literature review of randomized control trials on pediatric patients comparing results between Modified Ultrafiltration (MUF) to Conventional Ultrafiltration (CUF)

Grace E. Hsiung, MD1,2,3
Jimmy T. Le, MA1
Cristina Feather, MD1
Zeyad Khoushhal, MD3
Vicente Valero III, MD3
Fizan Abdullah, MD, PhD1,2
Bradley T. Kulat, CCP, LP4
Carl L. Backer, MD1,4

1Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
2Division of Pediatric Surgery, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
3Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
4Division of Cardiovascular-Thoracic Surgery, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
Study Criteria

Inclusion

- Randomized Clinical Trials that had two separate arms comparing MUF vs. CUF
- Patients under 18 years old undergoing cardiopulmonary bypass

Exclusion

- Observational studies
- Case studies
- Cross over trials
- Quasi-randomized trials

Study Characteristics

- Conventional Ultrafiltration (CUF)
 - 387 randomized patients CUF only
 - Age range of 2-76 months

- Modified Ultrafiltration (MUF)
 - 509 randomized patients MUF only
 - Age range of 2-73 months

- 896 patients in 15 accepted publications
- Patient sample size ranged from 19-261 patients with average of 28 patients per study
- Study publications ranged from 1991-2008
- Meta-analysis could not be done due to significant cross study heterogeneity
11/15 Studies Reported ICU Length of Stay (LOS)

- Decrease in LOS with MUF: 8
- No significant difference in LOS: 3

13/15 Studies Reported on Ventilator Duration

- Decrease Ventilation Time with MUF: 7
- No Significant Difference: 6

9/15 Studies Reported on Blood Transfusion

- Decreased Blood Transfusion with MUF: 3
- No Difference Between MUF and CUF: 6
Post-Op Hematocrit

- **7/15 Studies Reported 1 hr Post-op Hct**
 - 9 Higher Hct with MUF
 - 2 No Difference
- **3/15 Studies Reported 48 hr Post-op Hct**
 - 2 Higher Hct with MUF
 - 2 No Difference

6/15 Studies Reported on 24hr Post-Op Blood Product Administration (FFP, Platelets)

- 24hr Post Op Blood Product Administration
 - 1 Decreased Blood Product Administration with MUF
 - 3 No Difference Between the Studies
 - 1 Increased Blood Product Administration with MUF

7/15 Studies Reported on 48 hr Chest Tube Drainage

- Chest Tube Drainage in first 48hrs
 - 2 Less Chest Tube Drainage with MUF
 - 1 Increase Chest Tube Drainage with MUF
 - 4 No Difference Between Studies
Other Outcomes

- **Length of Hospital stay (HLOS)**
 5/15 studies reported - No significant HLOS difference between the two groups

- **Mortality**
 11/15 studies reported on mortality - No significant difference in mortality between the two groups

- **Cytokines (IL6, IL 8, elastase, TNF)**
 4/15 studies reported - No difference in 24 hr post surgery

- **Post-op Creatinine**
 3/15 studies reported - 1 reported higher Creatinine w/MUF, 2 reported no difference

Summary of Studies

- **Leaning Positive for MUF**
 - Chest Tube Drainage
 - Blood Transfusions
 - Post-Op Blood Products
 - 48 hr Post-Op Hct

- **No Difference MUF and CUF**
 - Hospital LOS/ ICU LOS
 - Mortality
 - Cytokines
 - Creatinine
 - 1 Hour Post-Op Hct
 - Ventilatory Duration

Herding Cats-Problems with the Study

- Significant heterogeneity between studies - could not perform meta-analysis
 - Wide variety between protocols, reporting methods, age of studies 17 year spread

- Studies focused on very different parameters. High parameter report - 13/15 ventilatory duration to low report - 3/15 on 48 hr Hct

- Sample size - Only included Randomized Control Trials - Too rigid?
Study was Influenced by Lack of Standardization in Reporting

- Pathology - Defect? Cyanotic disease? Pulmonary hypertension?
- CPB technique - CPB components, Coated circuits, Prime, I/O, Pump times, Cross clamp times, DHCA?
- Meds - Antifibrinolytics - Aprotinin, Amicar, Steroids?
- MUF technique - Time, volume in/out, type of filter, A/V or V/V MUF?

What Does This All Mean?
Inconclusive Results

To MUF or Not to MUF - What’s Next?

- Multi-center Randomized Control Trials
- Standardization in outcomes reporting
- Transparency reporting clinical practice techniques and patient data
- Longer term and patient specific outcomes
- Impact of DUF/ZBUF on outcomes
- Look at other outcomes? COP, inotrope score
- Fresh new look at MUF vs. CUF - Data based from old studies
Lurie Children’s Hospital of Chicago Non-Scientific Modified Ultrafiltration Opinion

• Maximizes Hct before anesthesia hemodilutes patient!
• Allows time for hemodynamics to stabilize post CPB
• Allows time for fine tuning of ventilation status and inotrope support (semi-support state)
• Down time - Evaluation of surgical repair via TEE

Lurie Children’s Hospital of Chicago Ultrafiltration Approach

• CUF on CPB to maintain Hct of 30%
• ZBUF during rewarming or to normalize K+
• MUF attempted on every case - 10 minutes
• Exceptions: Heavy bleeding and single ventricle cases where Hct is greater than 42%

Thank You!