Acute Normovolemic Hemodilution:
Doernbecher Children’s Hospital Strategy and Experience
Ashleigh Trew CCP

Objectives

• Provide a brief overview of the ANH process at Doernbecher Children’s Hospital
• Outline our experience with ANH in the pediatric population

Definition

Acute Normovolemic Hemodilution (ANH):

post induction, pre-heparin, preoperative withdrawal of whole blood which is simultaneously replaced with crystalloid or colloid volume yielding a decrease in red cell volume
Bloodless cardiac surgery and the pediatric patient: a case study

AL. Gao, IR. St. Orso, F. Fitzgerald, U. Gollan, LI. Brown, and J. Sher.

J. Extra Corporeal Technol. 2014 Mar-Apr; 30-43

Bloodless Extracorporeal Membrane Oxygenation in the Jehovah’s Witness Patient

Thomas J. Ponder, BS, CCP; Vincent J. Glorioso Jr., BS, CCP, FFP, and Margaret Deane, MD

Bloodless pediatric cardiopulmonary bypass for a 2.3 kg patient whose parents are of Jehovah’s witness faith.

Strategic and operational aspects of a transfusion-free neonatal arterial switch operation.

Schanker M, Cone J, Faltyj M, Habel M

Blood Transfusions in Pediatric Cardiac Population

- **Association of Complications With Blood Transfusions in Pediatric Cardiac Surgery Patients**
 - Renal failure
 - Low cardiac output syndrome
 - Infection
 - Excessive post op bleeding
 - Increased hospital length of stay

Blood transfusion determines postoperative morbidity in pediatric cardiac surgery applying a comprehensive blood-sparing approach.

Mathias Boden, MD, Marian Kokoska, MD, Wolfgang Bervenick, DCC, Edith Scheinost, MD, Michael Bechstein, MD, Hermann Kopp, MD, MD and Bjorn Henschel, MD, MD

Pros vs Cons of ANH

PROS
- Preservation of native clotting factors & platelet function
- Use of allogenic blood products
 - ↓ inflammation
 - ↓ cytokines
 - ↓ risk of hemolytic transfusion reaction
 - ↓ TRALI
 - ↓ TACO
- ↓ Costs

CONS
- Hemodilution
- ↓ CaO₂
Blood Conservation Techniques

ANH Collection

- After induction and line placement, Anesthesia collects 10mL/kg into a CPD collection bag at a ratio of 10:1
- Agitated on blood rocking device upon collection
- Stored at room temperature in the room during the case

Collection Bags

- ANH Collection in 10:1 Blood to CPD Ratio
- 60mL Syringes
- 250mL CPD Bag
- 450mL CPD Bag
Blood Product Transfusion During CPB

- Hct
- MAP
- SvO₂ <55
- NIRS <25%
- Qp Flow
- Rising Lactate?

* The acceptable parameters vary from patient to patient. *

ANH Reinfusion

- Off CPB (under filled)
- Perfusion takes back venous line and starts concentrating the circuit volume (via in line hemoconcentrator - not MUF)
- Concentrated circuit volume reinfused
- Anesthesia gently begins Protamine administration
- Surgeon/Perfusion flush arterial line contents
- Timing of the Protamine titration is imperative for complete reversal since we’re giving back circuit concentrate (contains heparin)
- Once all of the circuit volume is in, Protamine is finished and ANH is reinfused

ANH Challenges

- Not enough room for volume (Lasix, leveling off the table, coming off CPB underfilled with as little residual volume as possible)
- Slower Protamine administration
- If bleeding after Protamine is in - sometimes give products prior to giving the ANH back (complex cases)
Thromboelastograph (TEG)

Normal Baseline

Thromboelastograph (TEG)

Rewarm

Thromboelastograph (TEG)

Post Protamine/ Post ANH Reinfusion
TEG Comparisons

<table>
<thead>
<tr>
<th></th>
<th>Baseline- Pre ANH Pre CPB</th>
<th>Rewarm</th>
<th>Post Protamine/ Post ANH</th>
</tr>
</thead>
<tbody>
<tr>
<td>R time</td>
<td>8.8</td>
<td>15.2</td>
<td>8.7</td>
</tr>
<tr>
<td>Angle</td>
<td>65.5</td>
<td>40.7</td>
<td>59.7</td>
</tr>
<tr>
<td>MA</td>
<td>55.4</td>
<td>41</td>
<td>47.1</td>
</tr>
</tbody>
</table>

Normal Ranges: R= 5-10min Angle= 52-67° MA= 55-74mm

Retrospective Observational Study

- **Single Center Cohort**
- **Patients** 0-18yo undergoing CPB between November 2013- November 2014
- **ANH group** (n=24) vs **Non-ANH group** (n=59)

Retrospective ANH Study

<table>
<thead>
<tr>
<th>Variable</th>
<th>Adjusted Difference</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary endpoint</td>
<td>mEq/L</td>
<td>%</td>
</tr>
<tr>
<td>Total blood products transfused</td>
<td>-13.8</td>
<td>-10.2-15</td>
</tr>
<tr>
<td>Packed red blood cells</td>
<td>-11.6</td>
<td>-12.1-13</td>
</tr>
<tr>
<td>Fresh frozen plasma</td>
<td>-8.8</td>
<td>-8.1-10</td>
</tr>
<tr>
<td>Platelets</td>
<td>-8.4</td>
<td>-13.3-4</td>
</tr>
<tr>
<td>C-reactive protein</td>
<td>-9.25</td>
<td>-5.8-1.26</td>
</tr>
<tr>
<td>Secondary endpoints</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated blood loss in first 6h, mEq/L</td>
<td>-6.18</td>
<td>-8.77-1.79</td>
</tr>
<tr>
<td>Estimated blood loss in first 24h, mEq/L</td>
<td>-6.06</td>
<td>-2.44-15.6</td>
</tr>
<tr>
<td>Maximum lactate in 24 h, mmol/L</td>
<td>-0.3</td>
<td>-0.91-0.12</td>
</tr>
<tr>
<td>Hematocrit at 72 h, %</td>
<td>-0.7</td>
<td>-1.1-0.4</td>
</tr>
<tr>
<td>Creatinine at 72 h, mg/dL</td>
<td>0.04</td>
<td>0.0001-0.1</td>
</tr>
<tr>
<td>Creatinine at 72h, mg/dL</td>
<td>0.25</td>
<td>-0.0.02-0.8</td>
</tr>
<tr>
<td>Venous return index score</td>
<td>-4.33</td>
<td>-7.3-2.14</td>
</tr>
<tr>
<td>Duration of cannular support, h</td>
<td>-8.87</td>
<td>-16.6-16.6</td>
</tr>
<tr>
<td>Duration of ventilation, h</td>
<td>-3.02</td>
<td>-4.8-13.7</td>
</tr>
<tr>
<td>Hospital length of stay, days</td>
<td>-2.5</td>
<td>-4.5-0.5</td>
</tr>
</tbody>
</table>
Collaboration

Conclusion

- ANH in pediatrics has the potential to be safe and successful.

THANK YOU
Hematocrit Calculations Excel Sheet

<table>
<thead>
<tr>
<th>Patient Weight (kg)</th>
<th>Body Surface Area (m²)</th>
<th>Cardiac Index (m²/min/m²)</th>
<th>Cardiac Index (m²/min/m²) Post-ABX</th>
<th>Cardiac Index (m²/min/m²) Post-ABX + 0.52</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.2</td>
<td>0.38</td>
<td>4.18</td>
<td>4.18</td>
<td>4.18</td>
</tr>
<tr>
<td>18</td>
<td>0.42</td>
<td>4.30</td>
<td>4.30</td>
<td>4.30</td>
</tr>
<tr>
<td>20</td>
<td>0.46</td>
<td>4.42</td>
<td>4.42</td>
<td>4.42</td>
</tr>
</tbody>
</table>

Vasoactive Inotropic Score

Calculation:

1. Warmsky IS = dopamine dose (µg/kg/min) + dobutamine dose (µg/kg/min) + 100 × epinephrine dose (µg/kg/min) + 10,000 × vasopressin dose (U/kg/min) + 100 × norepinephrine dose (µg/kg/min)

2. VAS = IS + 10 × milrinone dose (µg/kg/min) + 10,000 × vasopressin dose (U/kg/min) + 100 × norepinephrine dose (µg/kg/min)

3. VAS = IS + 10 × milrinone dose (µg/kg/min) + 10,000 × vasopressin dose (U/kg/min) + 100 × norepinephrine dose (µg/kg/min)
Statistical Analysis

- Main predictor: use of ANH
- Bivariate Analysis comparing baseline demographic characteristics and intraoperative variables between the ANH and the usual care group
- We used two-sample Student's t-test for continuous variables and chi-square for categorical variables.
- Primary endpoint analysis: blood product transfused (mL/kg) we used simple regression analysis with robust variance estimation
- A multivariate linear regression model with robust variance estimation was then fitted to compare the differences between the ANH and usual care group and adjust for a priori defined potential confounders including age, ASA classification, and RACHS-1 score.
- Since age spanned across a wide range of values, in exploratory analyses, we modeled age using different functional forms (continuous, categorical, and ordinal categorical).
- A two-sided alpha level of 5% was required for statistical significance.

Other Considerations

- Patient volume status
 - Volume overload
 - “dry”
- Hemodynamic tolerance during removal
- Pre-operative Hematocrit
- Resultant Hematocrit calculation
- Anticipated complexity of surgical repair/ cardiopulmonary bypass time
- Complete correction vs mixing post op

References