Anesthesia and the STS Congenital Database
Collaborative Approach for the Future

Presented by: Vyas M. Kartha, MD, FAAP
April 18, 2015
Director Pediatric Cardiac Anesthesia
Disclosures

• Thanks to Dr. Vener, CCAS Database Chair, and Associate Professor of Anesthesiology at Texas Children’s Hospital, as well as, the CCAS Database Committee.

• none
Congenital Heart Disease patients Outcomes

• Multiple variables: physiology, pathology, genetics, team managing patients
• Team: physicians, surgeons, trainees, nurses, respiratory therapists, pharmacy, blood bank and pathology medicine
• Both good and bad are not the result of any one group or individuals
CCAS Database

- Collaboration between Society of Thoracic Surgeons Congenital Heart Surgery Database
- Participants in the Multi-Societal Database Committee for Pediatric and Congenital Heart Disease helping standardization of nomenclature and communication across databases
 - Surgery (STS, EACTS, CHSS)
 - Anesthesia (CCAS)
 - Cardiology (ACC, AEPC)
 - Critical Care (PC4, PCICS, SCCM)
 - Nursing
 - Government Agencies
2010 – June 2014 Data

• From January 1, 2010 through December 2014
 • 122 Surgical Programs performing CHS in U. S.
 • 115 Surgical Programs participating
 • Anesthesia Programs paying to participate
 • 48 Anesthesia Programs submitting data
 • 60% of data is surgical only
 • 95,132 submitted; 57,862 have usable data beyond demographics
Children’s Healthcare of Atlanta (Emory University)	Yale New Haven Hospital
All Children’s Hospital/Johns Hopkins Medicine	NYU Hospital Center
Children’s Hospital of Philadelphia	Washington University School of Medicine
University of Colorado Health Sciences Center	UCLA School of Medicine
Cincinnati Children’s Hospital Medical Center	University of Rochester Medical Center
Children’s Hospital and Clinics - Minneapolis	The Children’s Mercy Hospital
Nationwide Children’s Hospital	Children’s Hospital of the King’s Daughters
University of Minnesota Amplatz Children’s Hospital	University of Texas Health Sciences Center Houston
Saint Joseph’s Children’s Hospital of Tampa	Primary Children’s Medical Center
The University of North Carolina Hospitals	Cleveland Clinic
Arnold Palmer Medical Center	Le Bonheur Children’s Hospital
Arkansas Children’s Hospital	University of Mississippi Medical Center
Children’s Hospital Boston	Riley Hospital of Children (Clarian Health)
Methodist Children’s Hospital	Lucile Salter Packard Children’s Hospital at Stanford
Sutter Memorial Hospital	Children’s National Medical Center
Texas Children’s Hospital	UC Davis Medical Center
Kosair Children’s Hospital	Mayo Clinic Rochester
Duke University Hospital	Children’s Memorial Hermann Hospital
Alfred I. duPont Hospital for Children	Rush University Medical Center
Joe DiMaggio Children’s Hospital	Seattle Children’s Hospital
Monroe Carell, Jr. Children’s Hospital of Vanderbilt	Miami Children’s Hospital
Why and How

• Anesthesia participation: $3300/yr per site
• Just need to addend signature page to include anesthesia group
• Data entry can be done by almost anyone
Why it Should be Important to Your Practice

• Children with history of Cardiac Disease have up to 85x higher likelihood of having cardiac arrest
• Anesthesia touches these children throughout their hospitalizations – OR, Cath labs, ICUs, Radiology, etc.
Why participate? How can one use the data?

• Document productivity and benchmark to national “standards”
 • Adverse Outcomes data
 • Medication Utilization
 • Transfusion Data
 • Practice changes
Why participate? How can one use the data?

- Example: Early Post-op Extubation
- Collaborative Learning – other centers are doing “Y” successfully, what can we learn?
- Everyone remembers an N=1, but when N=50 then there is more significance
- Leverage in administrative decisions, future planning. Data provides a strong component to the table.
Database Growth (Total Cases)
CPB Cases Only (Cumulative)
Cath Lab Procedures (Cumulative)

- Spring 2012
- Fall 2012
- Spring 2013
- Fall 2013
- Spring 2014
- Fall 2014
Anesthesia - Related Unplanned Events

<table>
<thead>
<tr>
<th>Event Description</th>
<th>CPB / No CPB</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Unplanned Events</td>
<td>36,885</td>
<td>56,749 (98.1%)</td>
</tr>
<tr>
<td>Any Unplanned Events</td>
<td>801 (2.1%)</td>
<td>1,046 (1.8%)</td>
</tr>
<tr>
<td>- Cardiac Arrest UNRELATED to Surgery</td>
<td>44 (5.5%)</td>
<td>103 (9.8%)</td>
</tr>
<tr>
<td>- Airway Related Events (Difficult/Extubation/Injury)</td>
<td>293 (36.6%)</td>
<td>405 (38.7%)</td>
</tr>
<tr>
<td>- Vascular Related Events (Access>60min/Hematoma/Arrhythmia/Injury)</td>
<td>316 (39.5%)</td>
<td>341 (32.6%)</td>
</tr>
<tr>
<td>- Medication Related Events (Anaphylaxis/Protamine/Wrong Drug-Dose/MH/Recall)</td>
<td>124 (15.5%)</td>
<td>151 (14.4%)</td>
</tr>
<tr>
<td>- TEE Related Events</td>
<td>66 (8.2%)</td>
<td>94 (9.0%)</td>
</tr>
</tbody>
</table>

4/18/2015
National Aggregate Data

- Invasive Monitoring in Neonates (0-30 days)
 - Central Lines
 - Internal Jugular – 36.5%
 - Femoral – 26.9%
 - Subclavian – 3.4%
- Extubation in OR by Age Groups
 - Neonates – 2.9
 - Infants – 12.0%
 - Children (1-18 yrs) – 28.5%
 - Adults (> 18 yrs) – 22.8%
Aggregate Extubation Data

• Extubation in OR by STAT Category
 • Category 1 – 29/5% (ASD, VSD, ToF)
 • Category 2 – 19.6% (Fontan)
 • Category 3 – 11.9% (AV Canal, MAPCA)
 • Category 4 – 7.8% (ASO)
 • Category 5 – 4.5% (Norwood, Hybrid, TA)
Updates to Database

- Changes Effective in v3.22 as of January 1, 2014
 - Medications
 - Increased adverse Events, including ocular and integument injury and cardiac arrest RELATED to surgical/cardiac manipulation
 - Antifibrinolytic Dosing and Pro-Coagulent Dosing

- Upcoming Changes for next Version
 - Consolidated Blood Product reporting
 - Further revisions to medication reporting
Recent FAQs

• Case Cancelled after inadvertent carotid artery cannulation by anesthesia
 • Adverse Event = Arterial Puncture, even though no hematoma, it resulted in cancellation of case

• Antifibrinolytic Dosing Question
 • Antifibrinolytic (TxA) load – exceeds maximum allowable
 • Antifibrinolytic (Amicar) – what is the definition of “loading dose”
Lessons to be Learned(1):

• Large numbers of patients do not make up for missing or wrong data but can begin to smooth out errors
• Unlike adult cardiac procedures, congenital cardiac surgery covers an enormous risk stratification, from nearly 0% morbidity and mortality (isolated ASD), to approximately 20% mortality (complex Arch/Single Ventricle neonates)
Lessons to be learned (2):

- Apples ≠ Oranges; dataset has to be large enough to allow reasonably equal patient populations in study to avoid conflicting differences in outcomes with differences in patient populations.
- Accumulating data takes time given the wide spectrum of lesions being treated.
- Also unlike adults; our patients need to be followed for decades to determine both mortality and, perhaps more importantly, morbidity.
Items of interest that CCAS Database Committee has been working on:

- Dashboards and Scorecards
- Establishing National Standards
- Working with PC4 and IMPACT
Thank You