Use of Extracorporeal Membrane Oxygenation Support for Stage IV Lung Injury: A Case Report

Claire Jara, Damien Carter, Igor Prudovsky, Doreen Kacer, Tee Soul, Joseph Rappold, Esther Shao, Michael Robich, John St Onge, and Robert Kramer

Maine Medical Center Cardiovascular Institute
Portland, Maine
Situation:

- 24 y/o Female
- 91kg, 172cm
- Trailer Fire, unresponsive on scene
- Sustained 37% TBSA full thickness burns with a Grade IV lung inhalation injury
- Severe respiratory acidosis
VV ECMO Strategy:

- 17Fr percutaneous venous cannula in RIJ
- 25Fr multi-stage venous cannula in RFV
- CardioHelp-I with 5.0 HLS Bioline disposable
- TEE confirmed cannula position, preserved EF, no PFO, or valvular anomalies
VV ECMO Course – 166 hours

- Taken to the OR
VV Course

- Initial Goals:
 - Fluid replacement - Parkland Formula & BSA – 300cc/hr LR for 24hr post initial burn
 - Minimum u/o >30cc/hr
 - 2x daily Bronch with nebulized heparin
- Oliguric, K+ >7.0, elevated PTT despite off systemic anticoagulation
- Hypotensive → increasing pressor requirements (vaso, then NE)
- Rising Lactate 9.0, peaked at 15.0
- Cardiac arrhythmias
Etiology of Metabolic Acidosis

- Ischemic Bowel?
- Low Cardiac Output?
- Use of High Dose Vasopressors?
- Anemia and Inadequate Oxygen Delivery?
- Cyanide Poisoning?
Day 1 - 2

- **Evaluation**
 - Bedside exploratory laparotomy → NO ischemic bowel
 - Heart Failure Cardiology Consult with Echo
 - Bedside TEE → under-filled, hyper-dynamic LV
 - Team Concluded VA ECMO not indicated

- **New Goals**
 - ↑ Volume resuscitation including FFP gtt at 150cc/hr
 - Increase Transfusion Trigger
 - Wean vasopressors
 - 2nd Treatment for cyanide poisoning – sodium thiosulfate
VV ECMO Course Day 3 - 6

Day 3 – improving hemodynamics
- volume resuscitation reduced → FFP drip stopped
- improving lactate

Day 4 – successful wean trial
- elected to continue support until proning for back debridement was completed
- Laparotomy closure in OR

Day 5 - 6 – Debridement and excision of back burns in OR
Severe hemorrhage
- 41 RBCs, 9 platelets, 37 FFP over next 24 hrs
- Procedure EBL 4L
Successful decannulation despite hemorrhage within 18 hours post procedure
Assessment of Endothelial Damage
DAMPs (Damage Associated Molecular Patterns) & Shed Glycocalyx

- Hemorrhagic shock and severe burn result in the release to circulation of Damage Associated Molecular Patterns (DAMPs)
 - DAMPs → endotheliopathy, loss of endothelial glycocalyx → increased endothelial permeability and systemic inflammation
- We measured mitochondrial DNA (mtDNA) and shed syndecan 1 (a component of glycocalyx) and compared to healthy donor plasma
 - Beginning measurements: mtDNA content was 20x control
 - Following blood and plasma transfusions: mtDNA content was reduced to 3x control
- Plasma levels of mtDNA and shed syndecan 1 decrease in the course of RBC and FFP transfusion
- Administration of FFP and RBCs may decrease 3rd spacing in patients with severe endothelial injury

Discussion

- VV ECMO – corrected the respiratory acidosis via CO2 removal
- Burn patients experience severe endothelial Injury caused a massive third spacing and hypovolemia
- In this case worsening metabolic acidosis occurred subsequent to hypovolemia and possible poisoning.
 - Central Venous monitoring or Pulmonary Artery pressure monitoring could have been beneficial in diagnosis
- DAMPs, Syndecan 1 and mtDNA may prove to be a good assay for evaluating treatment of glycocalyx injury
 - Addition of FFP continuous infusion may have contributed to reduced capillary leak
- Heparinization while on ECMO during surgery (should consider stopping heparin prior to surgery).
Conclusions:

- Inhalation burn patients have a high mortality rate.
- VV ECMO can be used to support Grade IV inhalation injuries/Gas exchange.
- The hemodynamic monitoring is essential.
- Aggressive treatment of capillary leak, and improving oxygen delivery is imperative to worsening metabolic acidosis.
- mtDNA and syndecan 1 may prove to be a good assay for evaluating treatment of glycocalyx injury.
References
