Perfusion Techniques for Initiating ECMO

Molly Elisabeth Oldeen MS CCP FPP LP
Ann & Robert H Lurie Children’s Hospital of Chicago

Purpose

- Avoid unwanted complications of ECMO that may be caused during the initiation period
 - Neurologic – more prevalent in pediatrics
 - ICH – 7.6% (neonates)
 - Cerebral infarction – 6.9% (neonates)
 - Acute Kidney Injury

Goals

- Discuss techniques to initiate ECMO efficiently
- Discuss techniques related to each phase of ECMO initiation
 - Pre-Initiation
 - Initiation
 - Post-Initiation & Beyond

Efficiency

- eCPR: “Every minute counts.”
 - Be prepared 24/7
- Simulations/Training – Multidisciplinary
 - Perfusionists, ICU & OR nursing staff, ICU physicians, etc.
- Collaboration
 - Nursing
 - Blood bank
 - O-Log release of blood for eCPR
 - Communication with IR and anesthesia for expedited cross matched blood available for inpatients
 - Positive reinforcement
Delegation to available staff prior to arrival
 - HPH
 - Drug Res
 - Consider ICU assistance with priming and other ancillary tasks
 - Location of equipment
 - Dedicated location in the ICU
 - Supplies in operating room
 - Travel cart
 - Be prepared
 - Multiple sets of canulas immediately available
 - Dilator kits

Documentation:
- Location of equipment
- Dilator kits
- Supplies in operating room
- Note skipped steps during initiation process due to emergent situations

Setup
- Consider RN assistance with priming and other ancillary tasks
- Setup
 - Identical each time
 - Two person sign off
 - Priming
 - Consistency in blood products and medications, sequencing
 - Initiation

Pre-Initiation
- Established Institutional Protocols
 - Patient injection, vasoconstrictors, troubleshoot, anticoagulation
- Checklists ✓
 - Setup
 - Identical each time
 - Two person sign off
 - Priming
 - Consistency in blood products and medications, sequencing
 - Initiation

Pre-Initiation
- Checklists (continued)
 - Provide consistency in care
 - Documentation
 - Equipment and lot numbers
 - Process
 - Note skipped steps during initiation process due to emergent situations
 - Bloodless initiation due to lack of blood available or eCPR
Initiation

- **Priming Techniques**
- **Physiologic Prima**
- **Blood Gas Management**
- **Monitoring**
 - \(pO_2 \)
 - \(pCO_2 \)
 - Temperature Considerations

Blood Gas Management

- Incorporate continuous blood gas monitoring to monitor prime values and immediate post initiation values
- **CDI**
- Spectrum M4
- Cerebral/Somatic NIRS monitoring

Priming Techniques

- Similar to CPB
- Physiologic Prima
 - Avoid
 - Avoid Hypothermia (Temperature below 32°C improves mortality)
 - Avoid Hypertension (Temperature above 32°C improves mortality)
- Calcium
- Potassium
- UDF: Use if EVACED to avoid hypotension caused from sudden unmasked blood loss initiation
- Clorax
- Arterial/Arachnoid pressure
- Obtain Prime Supplies and correct deficiencies
- Documentation

Especially important in VV ECMO
Blood Gas Management – pCO₂

- Critical to correct hypercapnia slowly
- Consider matching pre-ECLS values – slowly brought into target range
- Congenital Diaphragmatic Hernia – pCO₂ > 100 mmHg
- Be sure sweep is OFF in closed system
- Have exogenous CO₂ available
- Priming
- Oxygenator efficiency

Blood Gas Management – pO₂

- FiO₂ considerations
 - 21% post resuscitation
 - Avoid reperfusion injury
 - 50-70% VA
 - 100% VV
- Maximize dissolved oxygen going through the lungs
Temperature Considerations

- Hypothermia post arrest/eCPR?
 - Confirm with physician
 - Set heater cooler temperature appropriately
 - Prevent reperfusion injury
 - Ability to remove CO2 more effectively (more soluble)
 - Avoid unwanted hypothermia
 - Post-Cardiac??
 - Avoid hyperthermia
 - Note equipment default settings

Post-Initiation – Reevaluate Plan of Care

- Blood pressure considerations
 - Reduce dopamine, inotropic support
 - Limit increase in fluid and blood/pressure medications
- Ventilator Considerations
 - Reduce support - trends in ventilator settings (avoid complete rest)
- Optimal flows
 - Venous return increased flow to avoid reversed circulation/flow/vascular injury
 - Avoid aggressive treatment of acidosis
 - Limit treatment with NaHCO3 to avoid post arrest alkalosis
 - Volume resuscitation
 - Circuit has distensible volume
 - Cytokine response may vasodilation and increased capillary permeability
 - Options: Blood products, albumin, crystalloid

Temperature Management Literature Review

- NEST Trial
 - Randomized neonates, no improved outcomes at 2 years of age
- THAPCA Trial
 - No difference in outcomes between TH and control patients
- Guaman 2018, Bleeding Complications and Mortality in Neonates Receiving TH and ECMO
 - No difference in mortality between those who did and did not receive TH, TH not contraindicated
- Cashen 2018
 - Therapeutic hypothermia independently associated with hemorrhage in neonates
 - Secondary analysis of BATE study, Prospective data collection, n=20
 - 40% vs 15.8% ICH, Temperature <34deg C
- Cheng 2018, Post Arrest Therapeutic Hypothermia in Patients with CHD
 - CHD post arrest can be treated safely and safely with TH, decrease incidence of seizures, n=30
- Lou 2015, Safety of TH in children on VA ECMO after cardiac surgery.
 - Retrospective review, n=96.
 - TH can be safely provided with no increase in complication rates

In conclusion...

- As Perfusionists, optimize what is within our control during this phase of ECMO
 - Efficiency in preparedness
 - Circuit Prime
 - Initial pump and patient blood gases
 - Temperature
- Not every initiation is the same
 - Variable physiology
 - Same circuit
References

